
THE TOPOS-THEORETIC APPROACH TO FORCING

KAY THOMPSON

Abstract. We develop the necessary categorical notions to describe an elementary topos and relevant examples,

such as categories of sets, bundles, and sheaves. We then examine how taking sheaves over a partial order relates to

Cohen’s method of forcing and use this to construct a topos which ‘models’ ZFC+¬CH.
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1. Introduction to Toposes

To begin, we introduce the notion of an elementary topos.

Definition 1.1. An elementary topos is a category C such that

• C is finitely complete, i.e., C has all finite limits
• C is finitely cocomplete, i.e., C has all finite colimits
• C has exponentiation
• C has a subobject classifier

We expand on each part of the definition below.

1.1. Finite Limits.

Let C be a category.

Definition 1.2. A terminal object t is an object of C such that, for every object a of C, there is a unique morphism
φa : a→ t.

Let I be a finite category and let F : I → C be a functor.

Definition 1.3. A cone on F is an object c of C and a collection of morphisms {pi : c → F (i)}i∈I such that, for
every morphism γ : i→ j in I, the following diagram commutes.

c

F (i) F (j)
F (γ)

pi pj
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The collection of cones on F form a category Cone(F ) in which the morphisms (c, {pi}i∈I) → (d, {qi}i∈I) are
morphisms φ : c→ d in C such that, for every i ∈ I, the following diagram commutes.

c d

F (i)

qipi

φ

Definition 1.4. A limit of F is a terminal object in the category Cone(F )

Definition 1.5. A diagram of shape I is a functor F : I → C. A limit of a diagram is the limit of said functor.

We say that a category C is finitely complete if every finite diagram of C has a limit. Equivalently, a category is
finitely complete if and only if it has a terminal object and pullbacks.

Definition 1.6. A pullback is a limit of the diagram of shape

a

b z

f

g

In Set, given a diagram f : A → Z ← B : g, the pullback is the set A ×Z B = {(a, b) ∈ A × B : f(a) = g(b)},
together with the restrictions to A×Z B of the projection maps πA, πB .

1.2. Finite Colimits.

Definition 1.7. An initial object i is an object of C such that, for every object a of C, there is a unique morphism
φa : i→ a

Definition 1.8. A cocone of F is an object c of C and a collection of morphisms {qi : F (i)→ c}i∈I such that, for
every morphism γ : i→ j in I, the following diagram commutes.

F (i) F (j)

c
qjqi

F (γ)

Cocones on F form a category Cocone(F ) in a similar way to cones.

Definition 1.9. A colimit of F is an initial object in Cocone(F )

We say that a category C is finitely cocomplete if every finite diagram of C has a colimit. Equivalently, a category
is finitely cocomplete if and only if it has an initial object and pushouts.

Definition 1.10. A pushout is the colimit of the diagram of shape

z a

b

f

g

In Set, given a diagram f : Z → A, g : Z → B, the pushout is the set A ⊔Z B = A ⊔ B/{(a, b) ∈ A ⊔ B : ∃z ∈
Z(f(z) = a∧ g(z) = b)}, together with the inclusions to A⊔B composed with the quotient map A⊔B → A⊔Z B.
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1.3. Exponentiation.

Let C be a category with binary products. We say that C has exponentiation if, for all object a, b of C, there is
an object ba and a morphism ev : ba × a → b such that, for any object c and morphism g : c × a → b, there is a
unique morphism ĝ : c→ ba such that the following diagram commutes

ba × a

b

c× a

ĝ×1a

g

ev

In a category C with exponentiation, we have a bijection HomC(c× b, a) ∼= HomC(c, b
a)

In Set, the exponentiation BA is the set of functions from A to B.

A category with finite limits and exponentiation is called Cartesian closed.

1.4. Subobject Classifier.

Any monomorphism f : A ↣ B in the category of sets denotes a subset of B, namely, the image of f , which
is isomorphic to B. Similarly, in an arbitary category C, a subobject of d is a monomorphism f : a ↣ d. We can
define an ‘inclusion’ between subobjects

Definition 1.11. Given two subobjects f : a ↣ d and g : b ↣ d of d, we say that f ⊆ g if there is a (necessarily
monic) morphism h : a→ b such that the following diagram commutes

b

d

a

h

f

g

We note that ⊆ is reflexive and transitive, but not quite antisymmetric. Take for example a = {4, 5, 6}, b =
{1, 2, 3}, d = {0, 1, 2, 3}, g inclusion, f : a→ d mapping x 7→ x− 3.

{4, 5, 6}

{0, 1, 2, 3}

{1, 2, 3}

−3

+3 −3

However, when we have such a diagram, i.e., when f ⊆ g and g ⊆ f , we have isomorphic subobjects f ∼= g.
Thankfully, ∼= is an equivalence relation. We form the collection Sub(d) = {[f ] : f is monic with target d}. As such,
we redefine a ‘subobject’ to be an equivalence class in Sub(d). In Set, we have an isomorphism Sub(A) ∼= P(A).
We now define a general analog to the fact that 2A ∼= P(A).

Definition 1.12. Let C be a category with a terminal object 1. A subobject classifier is an object Ω of C together
with a morphism ⊤ : 1→ Ω satisfying the Ω-axiom:
For any subobject f : a ↣ d there is a unique characteristic map χf : d → Ω such that the following diagram is a
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pullback square

a d

□

1 Ω

f

⊤

χf!

In any category C that has a subobject classifier and exponentiation, we have Sub(d) ∼= HomC(d,Ω) ∼= Ωd. In
Set, the subobject classifer is any two element set; we let 1 := {1} be our terminal object and we use 2 := {0, 1}
together with the inclusion map ⊤ : 1→ 2 as our classifier.
The Ω-axiom is a topos-theoretic analog to the comprehension axiom of ZFC.

2. Examples

2.1. Set and Set→. Clearly Set is a topos (see above).
Another example of a topos is the category Set→, in which the objects are morphisms in Set and the morphisms
are commuting squares: given f : A→ B and g : C → D, a morphism from f to g is a pair of functions φa : A→ C
and φb : B → D such that

A B

C D

f

g

φbφa

commutes. The terminal object of Set→ is the identity morphism 1 → 1 in Set. A pullback diagram (left) has a
limit (right) made by forming the pullbacks of the front and back Set-diagrams

B A×Z B B

B′ A′ ×Z′ B′ B′

A Z A Z

A′ Z ′ A′ Z ′f ′

g′f

φb

φa

φz

g pa

pb

g

f
g′

f ′

φz

φa

φb

k

pa′

pb′

where k is given by the pullback diagrams in Set. The subobject classifier in Set→ is the object Ω : {0, 1
2 , 1} → 2

together with the morphism ⊤ : id1 → Ω

1 {0, 1
2 , 1}

1 2

id1 Ω

t′

true

2.2. Bundles. Let A be a collection of pairwise disjoint sets. We can index these sets with the set I, such that
A = {Ai : i ∈ I}, and let A =

⋃
A =

⋃
i∈I Ai. We can then visualize our structure with the following image from

Goldblatt’s Topoi.
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We have a map p : A→ I, where p(a) = i iff a ∈ Ai, which is well defined by the disjointness condition on A.

Definition 2.1. We introduce the following terminology:

(i) The set Ai is called the stalk or fiber over i
(ii) The members of Ai are called the germs at i
(iii) The set I is called the base space
(iv) The set A is called the stalk space
(v) The whole structure is called a bundle over I

Conversely, given any map p : A→ I we can define Ai := p−1({i}) for each i ∈ I, and define A := {Ai : i ∈ I}.
Then A is a bundle over I.

We now consider the category Bn(I) of bundles over I. It is easy to see that this is the same as the category

Set ↓ I. A morphism in Bn(I), say k : A → B, is a morphism in Set k̂ : A→ B such that, if f : A→ I and

g : B → I are the functions associated to A and B respectively, we have g ◦ k̂ = f .

Proposition 2.1. The category Bn(I) is an elementary topos.

Proof. The terminal object 1 is the pair (I, idI). The stalk of this bundle over i is the set {i}, which is terminal in
Set. Thus, given any bundle (A, f) over I, the morphism f : A→ I gives rise the the unique morphism A → 1.
Given a diagram

B

A C

I

k

l

h

g

f

in Bn(I), the pullback is given by the pullback in Set of the square

A×c B B

A Ck

l

pB

pA

resulting in the following diagram in Bn(I)

A×c B B

I

A Ck

l

pB

pA

hf

g
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Since Bn(I) has a terminal object and pullbacks, Bn(I) is finitely complete. The proof of finite cocompleteness is
similar, with the initial object being the ‘empty bundle’.
The subobject classifier is the pair Ω = (2 × I, pI), where pI is the projection onto I. The stalk over i is the set
Ωi = {(0, i), (1, i)} = 2×{i}. We can think of the morphism⊤ : 1→ Ω as a bundle of morphisms truei : {i} → 2×{i}
mapping i to (1, i). □

If we consider sets A,B such that A ⊆ B, and bundles A = (A, f),B = (B, g) over I, we want to know how the
characteristic map χA : B → Ω acts. If we think about the characteristic map χA : B → 2 in Set, we answer our

own question. For any element x ∈ B, we simply map x to (χA(x), g(x)).
Note that ⊤ is a section of the bundle Ω, i.e., it picks one germ out of each stalk. This property is true of any map
from the terminal object 1 in a category of bundles. So, a map 1→ A in Bn(I), is a section of A. Thus, when we
consider the truth values of Bn(I), i.e., the elements of Ω, we are considering the sections of Ω. But we have an
isomorphism Hom(1,Ω) ∼= Sub(1), so the truth values in a category of bundles over I are exactly the subsets of I.

2.3. Sheaves. Sheaves are a sort of topological analog to bundles in which the base space I is a topological space.
We consider sheaves over a topological space (I,Θ).

Definition 2.2. A sheaf over I is a pair (A, p) where A is a topological space and p : A→ I is a continuous map
that is also a local homeomorphism.

The category Sh(I,Θ) of sheaves over (I,Θ) is a topos. We construct the subobject classifier as follows:
For each i ∈ I we define the equivalence relation ∼i on Θ by

U ∼i V ⇐⇒ ∃W ∈ I : i ∈W and U ∩W = V ∩W

The idea is that U ∼i V iff they are ‘the same’ local to i. The equivalence class [U ]i is the germ of i at U , it
represents the points of U that are ‘close’ to i. We take as the stalk over i the set Ωi = {(i, [U ]i) : U ∈ Θ}. Letting

Î =
⋃
Ωi, we have as the subobject classifier the sheaf Ω = (Î , p) where p : Î → I is the natural map. The

topology on Î has as a basis the sets [U, V ] = {(i, [U ]i) : i ∈ V } where U ⊆ V ∈ Θ.

2.4. Presheaves. Let C be a small category. Then the category SetC
op

= Ĉ (“presheaves over C”) is a topos. The
objects are functors F : Cop → Set and the morphisms are natural transformations between functors

Cop Set

F ′

F

α . Recall a natural transformation assigns to each object a of C a morphism

αa : F (a)→ F ′(a) such that the following diagram commutes for every f ∈ HomSet(a, b)

F (a) F (b)

F ′(a) F ′(b)

F (f)

F ′(f)

αbαa

Definition 2.3. For any small category C we have the Yoneda embedding

y : C → Ĉ
X 7→ HomC(−, X)

For each X, the functor y(X) : Cop→Set is the representable presheaf

For the purposes of forcing, we are interested in presheaves over a poset P

3. Heyting and Boolean Algebras

Write up more–for the talk, just mention:

• In a boolean algebra, such as the lattice of subsets P(A) every element x has a complement ¬x such that
x ∧ ¬x = 0, x ∨ ¬x = 1

• in a heyting algebra, such as the algebra of truth values in the category of sheaves over a space, this is not
the case. an open set U has a pseudocomplement Int(U c), which is not the complement of U unless U is
clopen. So taking the join does not necessarily give us the whole space (which is 1 in the algebra). This is
why topoi are great for modeling intuitionistic logic.
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4. Logic in Toposes

Write up more–for the talk, just mention

• The internal logic of a topos is given by the elements of the subobject classifier Ω, called the truth values.
Since this forms a closed lattice, we can do logic using meets, joins, complements/psuedocomplements etc.
So some topoi have an intuitionistic internal logic, whereas some, like Set have a classical internal logic

5. Lawvere-Tierney Topology

Given an elementary topos C, we can define a categorical analog to a topology

Definition 5.1. A Lawvere-Tierney topology is a map j : Ω→ Ω such that j◦⊤ = ⊤, j◦j = j, and j◦∧ = ∧◦(j×j),
i.e., the following diagrams commute.

1 Ω Ω Ω Ω× Ω Ω

Ω Ω Ω× Ω Ω

j×j

∧

∧

jj
j

j⊤

j
⊤

A Lawvere-Tierney topology j determines a unary operator, the closure, A 7→ Ā on the subobjects A ↣ X for
every object X in C via the following diagram

Hom(X,Ω) Sub(X) A

Hom(X,Ω) Sub(X) Ā

∼

Hom(1,j)

∼

The closure Ā is the subobject of X with characteristic morphism j ◦ χA

Ā

A X

1 Ω

1 Ω

j

χA

⊤

⊤

An equivalent statement to the definition of a Lawvere-Tierney topology is as follows: for every object A, A ⊆ Ā,
¯̄A = Ā, and Ā ∩ B̄ = ¯A ∩B.

We can take sheaves over Lawvere-Tierney topologies. We first introduce the notion of a dense subobject: a
subobject A ↣ X is dense in X if Ā = X. In this case, we call the morphism A ↣ X a dense monomorphism.

Definition 5.2. An object F of C is a sheaf for j, or a j-sheaf if, for every dense monomorphism m : A ↣
X, composition with m induces an isomorphism m∗ : HomC(X,F ) → HomC(A,F ), i.e., we have the following
commutative diagram:

A F

X

dense
!

The particular Lawvere-Tierney topology that we are interested in is the double negation topology ¬¬ : Ω→ Ω,
also called the dense topology. This is of interest to us because taking sheaves over ¬¬ lets us pass from a topos
with arbitrary internal logic to a topos with a classical internal logic. This is easy to see: for a sheaf for the

double negation topology, the identity ¬¬S = S necessarily holds!
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6. Forcing

We introduce the notion of a natural numbers object 1 N N0 s , for which the following diagram

commutes for any 1 X Xx f

1 N N

X X

0 s

x

f

h h

We start with a countable transitive model M |= ZFC, which by the axiom of infinity will have a natural
numbers object N .

Lemma 6.1. If C is a topos with a natural numbers object, and D is a topos with functors

D C⊣

Then D has a natural numbers object as well.

Corollaries of this lemma will help us in the construction of new toposes. The first is that the category of
presheaves over a topos that models ZFC has a natural numbers object:

SetC
op

Set
Γ

∆
⊣

Where Γ takes the global section of each presheaf and ∆ assigns each set to the constant functor from Cop to that
set.

Further, if a topos C has a natural numbers object, then the category of sheaves over a Lawvere-Tierney topology
j has a natural numbers object:

ShjC C
i

sh

⊣

where sh is the ‘sheafification’ functor, which is left adjoint to the inclusion functor.
For the purposes of forcing, we will using the Cohen Poset P, defined below.

In our model M of ZFC we want to force a set B in between the sets N and Sub(N) ∼= 2N . We do so by
approximating a monomorphism g : B → P(N). For a subset Fp ⊆ B ×N and a function p : Fp → 2, the pair

(Fp, p) is called a condition. We define an order on these conditions

q ≤ p ⇐⇒ Fq ⊇ Fp and q|Fp
= p

i.e., q extends p.
We now take presheaves MPop

. By the above, this category has a natural numbers object. We build a subobject
A of the constant functor ∆(B ×N), where A(p) = {(b, n) : p(b, n) = 0}. A is in fact a closed subobject of

∆(B ×N) with respect to the double negation topology, i.e. ¬¬A = A in Sub(∆(B ×N).
Letting Ω be the subobject classifier for MPop

and Ω¬¬ the subobject classifier for Sh(P,¬¬). Because A is
closed, the characteristic map of A χA : ∆(B ×N)→ Ω factors through Ω¬¬

¬¬A A ∆(B ×N) Ω¬¬ Ω Ω

Ω¬¬

1 Ω⊤

!

f

id

¬¬

So we have a map f : ∆B ×∆N → Ω¬¬, from which we can obtain a map g : ∆(B)→ Ω∆N
¬¬ , which is a

monomorphism.
The sheafification functor sh¬¬ is left exact and thus preserves monomorphisms. As such, our morphism g in the

category of presheaves is sent to a monomorphism ĝ : B̂ → ΩN̂
¬¬

We thus have N̂ ↣ B̂ ↣ P (N̂) = 2̂N̂ . Although our monomorphism B ↣ 2̂N̂ may not be ‘strict’, through some
additional very involved methods (expand in these notes later) we can find that, given strict inequalities
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N < 2N < B in our original model M , taking sheaves results in strict inequalities N̂ < 2̂N < B̂ in the new topos.

Then from the two results above, we will have N̂ < 2̂N < B̂ ≤ 2̂N̂
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