Problem 1. Prove that the sum of two odd numbers is an even number.

Solution 1.

Suppose that $n, m \in \mathbb{Z}$ are odd. Then we can choose $k, \ell \in \mathbb{Z}$ such that $n=2 k+1$ and $m=2 \ell+1$. So

$$
\begin{aligned}
n+m & =2 k+1+2 \ell+1 \\
\Longrightarrow n+m & =2 k+2 \ell+2 \\
\Longrightarrow n+m & =2(k+\ell+1)
\end{aligned}
$$

Note that $k+\ell+1$ is an integer, since $k, l, 1$ are all integers. Thus by the definition of an even integer, $n+m$ is even.

Problem 2. Prove that if n is even, then n^{2} is even, and if n is odd, then n^{2} is odd.

Solution 2.

Suppose that n is even. Then there is an integer k such that $n=2 k$. So

$$
\begin{aligned}
n^{2} & =(2 k)^{2} \\
\Longrightarrow n^{2} & =4 k^{2} \\
\Longrightarrow n^{2} & =2\left(2 k^{2}\right)
\end{aligned}
$$

Note that $2 k^{2}$ is an integer, thus n^{2} is even.
Now suppose that n is odd. Then there is $k \in \mathbb{Z}$ such that $n=2 k+1$. So

$$
\begin{aligned}
n^{2} & =(2 k+1)^{2} \\
\Longrightarrow n^{2} & =(2 k+1)(2 k+1) \\
\Longrightarrow n^{2} & =4 k^{2}+4 k+1 \\
\Longrightarrow n^{2} & =2\left(2 k^{2}+2 k\right)+1
\end{aligned}
$$

Note that $2 k^{2}+2 k$ is an integer, thus n^{2} is odd.

Problem 3. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$. (Notation: we denote " a divides b " as $a \mid b$)

Solution 3.

If $a \mid b$ and $b \mid c$, then there are integers r, s such that $a r=b$ and $b s=c$. So

$$
\begin{aligned}
c & =b s \\
\Longrightarrow c & =(a r) s \\
\Longrightarrow c & =a(r s)
\end{aligned}
$$

Then since r, s are integers, so is $r s$, thus by the definition of 'divides', we conclude that a divides c.

Problem 4. Suppose that $a<b$. Show that $a<\frac{a+b}{2}<b$.

Solution 4.

$$
\begin{array}{rl}
a<b & a<b \\
\Longrightarrow a+a<a+b & \Longrightarrow a+b<b+b \\
\Longrightarrow 2 a<a+b & \Longrightarrow a+b<2 b \\
\Longrightarrow a<\frac{a+b}{2} & \Longrightarrow \frac{a+b}{2}<b
\end{array}
$$

Combining the two inequalities gives us $a<\frac{a+b}{2}<b$

Problem 5. (Challenge) Show that $\sqrt{2}$ is irrational.

Solution 5.

(Proof by contradiction: we can talk about this method of proof next time)
For contradiction, suppose that $\sqrt{2}$ is rational. Then there are integers p and q such that $q \neq 0$ and

$$
\sqrt{2}=\frac{p}{q}
$$

We may also choose p and q such that they have no common factors, since if they did have a common factor, we could cancel it out.
By squaring both sides, we have

$$
2=\frac{p^{2}}{q^{2}}
$$

Multiplying by q^{2} gives us

$$
2 q^{2}=p^{2}
$$

Thus, by the definition of an even integer, we have that p^{2} is even. Since p^{2} is even, p is also even, by the result of exercise $2^{* * *}$. So, there is some $r \in \mathbb{Z}$ such that $p=2 r$, and thus $p^{2}=4 r^{2}$ and we see that p^{2} is in fact divisible by 4 , meaning that there is some integer s such that $p^{2}=4 s$. But then

$$
\begin{aligned}
p^{2} & =4 s \\
\Longrightarrow 2 q^{2} & =4 s \\
\Longrightarrow q^{2} & =2 s
\end{aligned}
$$

So q^{2} is also even! Thus p^{2} and q^{2} are both even, meaning they each have a factor of 2 , and this contradicts the fact that p and q have no common factors.
So since the assumption " $\sqrt{2}$ is rational" leads to a contradiction, it must be false, and we conclude that $\sqrt{2}$ is irrational.
***Here we are using what's called the 'contrapositive'. We can talk about this later, but the idea is that "If A, then B " is logically equivalent to "If 'not B ', then 'not A ". Thus the contrapositive of "If n is odd, then n^{2} is odd" is the statement "If n^{2} is not odd, then n is not odd" (but obviously, being 'not odd' is the same as being even).

