Logic (particularly first order logic) provides us with a formal system in which we can do mathematics and gives a way of verifying whether or not a proof is actually correct. In order to build up to first order logic, we will begin by learning propositional logic.

1 Propositional Logic

Propositional logic is a system for expressing logical statements (called formulas). We begin by defining atomic formulas:

Definition 1.1. An atomic formula is denoted by a lowercase letter such as p, q, r, s, \ldots, sometimes with subscripts, such as $p_{0}, p_{1}, p_{2}, \ldots$ These may or may not be assigned a real-world interpretation, for example, $p_{0}:=$ 'the sky is blue', $p_{1}:=$ ' 2 is an integer', \ldots. The two special atomic formulas are \top (read as 'true') and \perp (read as 'false').
We will refer to the set of atomic formulas as \mathcal{A}.

We may build more complicated propositional formulas by using the logical connectives below:

- $\wedge($ read as 'and')
- V (read as 'or')
- $\neg($ read as 'not')
- \rightarrow (read as 'implies')

Definition 1.2. We define what it means to be a propositional formula:

- Any atomic formula is a propositional formula
- If φ is a propositional formula, then $\neg \varphi$ is a propositional formula
- If φ and ψ are propositional formulas, then $\varphi \wedge \psi, \varphi \vee \psi$, and $\varphi \rightarrow \psi$ are propositional formulas.

We will call the set of all propositional formulas $\mathcal{L}(\mathcal{A})$.

It is important to note that \rightarrow (implication) is actually shorthand for a more complicated expression. We can informally reason that the formula $p \rightarrow q$ is logically equivalent to $\neg p \vee q$:

Claim. $p \rightarrow q$ is logically equivalent to $\neg p \vee q$
Informal proof. Since ' $p \rightarrow q$ ' means 'If p is true, then q is true', we need for q to be true whenever p is true. However, if p is not true, then there is no requirement on the truth value of q. So, there are two cases: either p is true or false. If p is false, then the statement 'If p, then q ' is said to be 'vacuously true'. Otherwise, p is true, and thus q must also be true. So, in order for $p \rightarrow q$ to be true, either p must be false (i.e., $\neg p$ is true), or, q must be true. Putting this into our symbols gives us $\neg p \vee q$.

1.1 Determining Truth

We may determine the truth value of a propositional formula using what is called a '(basic) truth assignment' on the atomic formulas.

Definition 1.3. A basic truth assignment t_{0} is a mapping from the set of atomic formulas, say, $\left\{\top, \perp, p_{0}, p_{1}, \ldots\right\}$ to the set $\{0,1\}$ such that $t_{0}(T)=1$ and $t_{0}(\perp)=0$. We will say that an atomic formula p_{i} is true if $t_{0}\left(p_{i}\right)=1$ and false if $t_{0}\left(p_{i}\right)=0$. Note that T is always true and \perp is always false.

We will extend this basic truth assignment to a mapping t from the set $\mathcal{L}(\mathcal{A})$ of all propositional formulas to the set $\{0,1\}$.

Definition 1.4. Given a basic truth assignment $t_{0}: \mathcal{A} \rightarrow\{0,1\}$, we may extend t_{0} to a (full) truth assignment $t: \mathcal{L}(\mathcal{A}) \rightarrow\{0,1\}$ in the following way: If φ, ψ are propositional formulas, and if $t(\varphi)$ and $t(\psi)$ are already defined, then we define

- $t(\neg \varphi)=1-t(\varphi)$
- $t(\varphi \wedge \psi)=\min (t(\varphi), t(\psi))$
- $t(\varphi \vee \psi)=\max (t(\varphi), t(\psi))$

We are now ready to determine the truth values of complicated propositional formulas given various different basic truth assignments. Let's do an example first, and then attempt to formalize the method:

Example. Determine the truth value of $\neg p \vee(q \wedge r)$ for each basic truth assignment $t:\{p, q, r\} \rightarrow\{0,1\}$. We will begin by listing out all possible basic truth assignments in the following manner:

p	q	r
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

We now wish to consider each of the smaller 'subformulas' which make up ' $\neg p \vee(q \wedge r)$. These formulas are $\neg p$ and $q \wedge r$, and we may determine their truth values using definition 1.4 applied to the atomic formulas:

p	q	r	$\neg p$	$q \wedge r$
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	1

We now finally may determine the truth values of the entire formula, this time using definition 1.4 applied to the formulas ' $\neg p$ ' and ' $q \wedge r$ ':

p	q	r	$\neg p$	$q \wedge r$	$\neg p \vee(q \wedge r)$
0	0	0	1	0	1
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	1	1

When creating a truth table for a propositional formula φ, it may be helpful to follow this method:

1. Determine which atomic formulas appear in φ
2. Write down each possible basic truth assignment on those atomic formulas
3. Determine the smallest subformulas that appear in φ
4. Use Defn 1.4 to determine the truth value of those formulas
5. Work your way up to larger and larger subformulas of φ following the same method (applying Defn 1.4 to the smaller formulas) until finally reaching φ itself

Example. What are the (non-atomic) proper subformulas of $(\neg p \wedge(q \vee r)) \rightarrow((\neg q \wedge \neg r) \vee T)$?
We use the following approach:

- The outermost logical connective is \rightarrow, which joins the two subformulas $\neg p \wedge(q \vee r)$ and $(\neg q \wedge \neg r) \vee T$. We will consider these two subformulas separately:
- $\neg p \wedge(q \vee r)$
- the outermost logical connective is \wedge, which joins the two subformulas $\neg p$ and $q \vee r$.
- Since these formulas consist only of atomic formulas and a single logical connective each, they are the smallest subformulas we will consider
- $(\neg q \wedge \neg r) \vee \top$
- the outermost logical connective is \vee, which joins the two subformulas $\neg q \wedge \neg r$ and T. Since T is an atomic formula, we are done with it. However, $\neg q \wedge \neg r$ contains more than one logical connective, so we must break it down further
$-\neg q \wedge \neg r$
* the outermost logical connective is \wedge, which joins the two subformulas $\neg q$ and $\neg r$. These formulas consist only of atomic formulas and a single logical connective, so we are done.
- We conclude that the non-atomic proper subformulas are:
$-\neg p$
$-q \vee r$
$-\neg p \wedge(q \vee r)$
$-\neg q$

$$
\begin{aligned}
& -\neg r \\
& -\neg q \wedge \neg r \\
& -(\neg q \wedge \neg r) \vee \top
\end{aligned}
$$

Example. Determine the truth value of $(\neg p \wedge(q \vee r)) \rightarrow((\neg q \wedge \neg r) \vee \top)$ for each basic truth assignment $t:\{p, q, r\} \rightarrow\{0,1\}$

p	q	r	$\neg p$	$q \vee r$	$\neg p \wedge(q \vee r)$	$\neg q$	$\neg r$	$\neg q \wedge \neg r$	\top	$(\neg q \wedge \neg r) \vee \top$	$(\neg p \wedge(q \vee r)) \rightarrow((\neg q \wedge \neg r) \vee \top)$
0	0	0	1	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	0	0	1	1	1
0	1	0	1	1	1	0	1	0	1	1	1
0	1	1	1	1	1	0	0	0	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1
1	0	1	0	1	0	1	0	0	1	1	1
1	1	0	0	1	0	0	1	0	1	1	1
1	1	1	0	1	0	0	0	0	1	1	1

This example brings us to a new definition.
Definition 1.5. A propositional statement φ is a tautology, denoted $\vDash \varphi$, if it is true for all possible basic truth assignments.

Example. $(\neg p \wedge(q \vee r)) \rightarrow((\neg q \wedge \neg r) \vee \top)$ is a tautology (proven by the truth table above).

