Logic (particularly first order logic) provides us with a formal system in which we can do mathematics and gives a way of verifying whether or not a proof is actually correct. In order to build up to first order logic, we will begin by learning propositional logic.

1 Propositional Logic

Propositional logic is a system for expressing logical statements (called formulas). We begin by defining atomic formulas:

Definition 1.1. An atomic formula is denoted by a lowercase letter such as p, q, r, s, \ldots , sometimes with subscripts, such as p_0, p_1, p_2, \ldots . These may or may not be assigned a real-world interpretation, for example, $p_0 :=$ 'the sky is blue', $p_1 :=$ '2 is an integer',.... The two special atomic formulas are \top (read as 'true') and \perp (read as 'false').

We will refer to the set of atomic formulas as \mathcal{A} .

We may build more complicated propositional formulas by using the logical connectives below:

- \wedge (read as 'and')
- \lor (read as 'or')
- \neg (read as 'not')
- \rightarrow (read as 'implies')

Definition 1.2. We define what it means to be a propositional formula:

- Any atomic formula is a propositional formula
- If φ is a propositional formula, then $\neg \varphi$ is a propositional formula
- If φ and ψ are propositional formulas, then $\varphi \wedge \psi$, $\varphi \vee \psi$, and $\varphi \rightarrow \psi$ are propositional formulas.

We will call the set of all propositional formulas $\mathcal{L}(\mathcal{A})$.

It is important to note that \rightarrow (implication) is actually shorthand for a more complicated expression. We can informally reason that the formula $p \rightarrow q$ is logically equivalent to $\neg p \lor q$:

Claim. $p \rightarrow q$ is logically equivalent to $\neg p \lor q$

Informal proof. Since ' $p \to q$ ' means 'If p is true, then q is true', we need for q to be true whenever p is true. However, if p is not true, then there is no requirement on the truth value of q. So, there are two cases: either p is true or false. If p is false, then the statement 'If p, then q' is said to be 'vacuously true'. Otherwise, p is true, and thus q must also be true. So, in order for $p \to q$ to be true, either p must be false (i.e., $\neg p$ is true), or, q must be true. Putting this into our symbols gives us $\neg p \lor q$.

1.1 Determining Truth

We may determine the truth value of a propositional formula using what is called a '(basic) truth assignment' on the atomic formulas.

Definition 1.3. A basic truth assignment t_0 is a mapping from the set of atomic formulas, say, $\{\top, \bot, p_0, p_1, \ldots\}$ to the set $\{0, 1\}$ such that $t_0(\top) = 1$ and $t_0(\bot) = 0$. We will say that an atomic formula p_i is true if $t_0(p_i) = 1$ and false if $t_0(p_i) = 0$. Note that \top is always true and \bot is always false.

We will extend this basic truth assignment to a mapping t from the set $\mathcal{L}(\mathcal{A})$ of all propositional formulas to the set $\{0,1\}$.

Definition 1.4. Given a basic truth assignment $t_0 : \mathcal{A} \to \{0,1\}$, we may extend t_0 to a (full) truth assignment $t : \mathcal{L}(\mathcal{A}) \to \{0,1\}$ in the following way:

If φ, ψ are propositional formulas, and if $t(\varphi)$ and $t(\psi)$ are already defined, then we define

- $t(\neg \varphi) = 1 t(\varphi)$
- $t(\varphi \land \psi) = \min(t(\varphi), t(\psi))$
- $t(\varphi \lor \psi) = \max(t(\varphi), t(\psi))$

We are now ready to determine the truth values of complicated propositional formulas given various different basic truth assignments. Let's do an example first, and then attempt to formalize the method:

Example. Determine the truth value of $\neg p \lor (q \land r)$ for each basic truth assignment $t : \{p, q, r\} \to \{0, 1\}$.

We will begin by listing out all possible basic truth assignments in the following manner:

p	q	r
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

We now wish to consider each of the smaller 'subformulas' which make up $\neg p \lor (q \land r)$. These formulas are $\neg p$ and $q \land r$, and we may determine their truth values using definition 1.4 applied to the atomic formulas:

p	q	r	$\neg p$	$q \wedge r$
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	1

We now finally may determine the truth values of the entire formula, this time using definition 1.4 applied to the formulas ' $\neg p$ ' and ' $q \wedge r$ ':

p	q	r	$ \neg p$	$q \wedge r$	$ \neg p \lor (q \land r)$
0	0	0	1	0	1
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	1	1

When creating a truth table for a propositional formula φ , it may be helpful to follow this method:

- 1. Determine which atomic formulas appear in φ
- 2. Write down each possible basic truth assignment on those atomic formulas
- 3. Determine the smallest subformulas that appear in φ
- 4. Use Defn 1.4 to determine the truth value of those formulas
- 5. Work your way up to larger and larger subformulas of φ following the same method (applying Defn 1.4 to the smaller formulas) until finally reaching φ itself

Example. What are the (non-atomic) proper subformulas of $(\neg p \land (q \lor r)) \rightarrow ((\neg q \land \neg r) \lor \top)$?

We use the following approach:

- The outermost logical connective is \rightarrow , which joins the two subformulas $\neg p \land (q \lor r)$ and $(\neg q \land \neg r) \lor \top$. We will consider these two subformulas separately:
- $\neg p \land (q \lor r)$
 - the outermost logical connective is \wedge , which joins the two subformulas $\neg p$ and $q \lor r$.
 - Since these formulas consist only of atomic formulas and a single logical connective each, they
 are the smallest subformulas we will consider
- $(\neg q \land \neg r) \lor \top$
 - the outermost logical connective is \lor , which joins the two subformulas $\neg q \land \neg r$ and \top . Since \top is an atomic formula, we are done with it. However, $\neg q \land \neg r$ contains more than one logical connective, so we must break it down further
 - $\neg q \wedge \neg r$
 - * the outermost logical connective is \wedge , which joins the two subformulas $\neg q$ and $\neg r$. These formulas consist only of atomic formulas and a single logical connective, so we are done.
- We conclude that the non-atomic proper subformulas are:

$$\begin{array}{l} - \neg p \\ - q \lor r \\ - \neg p \land (q \lor r) \\ - \neg q \end{array}$$

$$\begin{array}{l} - \neg r \\ - \neg q \land \neg r \\ - (\neg q \land \neg r) \lor \top \end{array}$$

Example. Determine the truth value of $(\neg p \land (q \lor r)) \rightarrow ((\neg q \land \neg r) \lor \top)$ for each basic truth assignment $t : \{p, q, r\} \rightarrow \{0, 1\}$

p	q	r	$ \neg p$	$q \vee r$	$\neg p \land (q \lor r)$	$ \neg q$	$\neg r$	$\neg q \land \neg r$		$ (\neg q \land \neg r) \lor \top $	$ \left (\neg p \land (q \lor r)) \to ((\neg q \land \neg r) \lor \top) \right $
0	0	0	1	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	0	0	1	1	1
0	1	0	1	1	1	0	1	0	1	1	1
0	1	1	1	1	1	0	0	0	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1
1	0	1	0	1	0	1	0	0	1	1	1
1	1	0	0	1	0	0	1	0	1	1	1
1	1	1	0	1	0	0	0	0	1	1	1

This example brings us to a new definition.

Definition 1.5. A propositional statement φ is a *tautology*, denoted $\models \varphi$, if it is true for all possible basic truth assignments.

Example. $(\neg p \land (q \lor r)) \rightarrow ((\neg q \land \neg r) \lor \top)$ is a tautology (proven by the truth table above).