1. SSS (side-side-side)
suppose we are given the lengths of the sides $a, b, c$.
suppose also that $a$ is the longest side, i.e., $a>b$ and $a>c$. Then

\#Solutions $\left.$|  | 0 | 1 |
| :---: | :---: | :---: |
|  | if $a \geqslant b+c$ | otherwise |$\quad a\right|_{c} ^{b}$ no matter where $b+c$ are placed we cannot form a triangle

2. ASA (angle-side-angle)
suppose we are given the values of $a, B, C$. Then

| \# Solutions | 0 | 1 |
| :---: | :---: | :---: |
|  | if $B+C \geqslant 180^{\circ}$ | otherwise |

3. SAS (side-angle-side)
suppose we are given the values of $A, b, c$. Then

| \#Solutions | 0 | 1 |
| :--- | :---: | :---: |
|  | if $A \geqslant 180^{\circ}$ | otherwise |

4. SSA (side-side-angle)
suppose we are given the values of $A, b, a$. Then

$$
\begin{aligned}
& \text { If } A \geq 90^{\circ}: \begin{array}{l|c|c}
\text { \#Solutions } & 0 & 1 \\
\hline & \text { if } a \leqslant b & \text { otherwise }
\end{array}
\end{aligned}
$$

see "SSA triangles" document for explanation
5. AAS rangle-angle-side)
suppose we are given the values of $A, B, a$. Then

| \#Solutions | 0 | 1 |
| :---: | :---: | :---: |
|  | if $B+C \geqslant 180^{\circ}$ | otherwise |

We can immediately find the value of $C(=180-A-B)$, so this reduces to the ASA case

