Side-Side-Angle Triangles

Solving a side-side-angle triangle can be tricky, because there may be one, two, or zero triangles that satisfy the given information.

Let's suppose we are given the value of the angle A, the side b, and the side a. This is a SSA triangle, so we begin as follows:

1) Draw a horizontal line with arbitrary length. We want the unknown side " c " to live on this line
2) Draw the side " b " such that the angle between b and the horizontal line is equal to " A "

3) We now want to determine the number of solutions there are. Cases:
(i) if $A \geqslant 90^{\circ}$, and $a>b$, then there is one solution. If $A \geqslant 90^{\circ}$, and $a \leqslant b$, then there are no solutions.
(ii) if $A<90^{\circ}$, and $a>b$, then there is one solution.

- the red side is two short, and will not ever reach the horizontal line.
- the green side is long enough, and

- there is only one

if $A<90^{\circ}$, and $a \leq b$, then there may be 0,1 , or 2 solutions
(follow the steps below)

In the case that $A<90^{\circ}$ and $a<b$, we proceed as follows:

1) We first want to check what length a must b for the triangle to have one solution.

This is also the minimum possible length of a for there to be a solution, as we will see below In this scenario, the only way we have a unique solution is if we can form a right triangle.
 Let's call the purple side a_{1}. It represents what a would have to be of we wanted there to be only 1 solution.

We can now use the Law of Sines to find $a_{1}: \frac{\sin (90)}{b}=\frac{\sin A}{a_{1}} \Rightarrow a_{1}=\frac{b \sin (A)}{\sin (90)}=b \sin (A)$
Now: if $a=a_{1}$, our triangle has exactly one solution, namely, the right triangle. If $a<a_{1}$, then we have no solution.

In this case, the side a is too short to reach the horizontal line

if $a_{1}<a<b$, then we have two solutions.
C. In this case, we are able to form 2 different triangles, because the values of B, C, C are not fixed.

Note that in one of our triangles, B is obtuse $\left(B>90^{\circ}\right)$ and in the other, B is acute $\left(B<90^{\circ}\right)$

We can now use the law of Sines to try to find the value of B. We know $\frac{\sin A}{a}=\frac{\sin B}{b} \Rightarrow \frac{b \cdot \sin A}{a}=\sin B$. As $\frac{b \cdot \sin A}{a}$ may not be, in general, "nice", we will have to take $\sin ^{-1}$ of each side to obtain a value for B. Unfortunately, the function $\sin ^{-1}$ will omit one of our possible values of B.
$\rightarrow a, b$ are positive. $0<A<90^{\circ}$, so $\sin A>0$. Thus, $\frac{b \cdot \sin A}{a}>0$
\rightarrow The range of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (equivalently, $\left[-90^{\circ}, 900\right]$, and $\operatorname{since} \frac{b \cdot \sin A}{a}>0$, we see that $0^{\circ}<\sin ^{-1}\left(\frac{b \cdot \sin A}{a}\right)<90^{\circ}$ Therefore, using the law of sines to find B gives is the acute possible value of B. Lets call this " B_{1} ".

From here, we know $A+B_{1}+C_{1}=180$, so $C_{1}=180-A-B_{1}$
We use the law of sines again to find $c_{1}=\frac{a \cdot \sin C_{1}}{\sin A}$.

How can we find the other possible value of B ? (lets call this B_{2})

We look back at our two triangles, and notice the triangle that lies in between our 2 solutions
 is isosceles, ie., two of its sides have the same length.

A basic geometric fact is that, in an isosceles triangle, the angles corresponding to the sides of equal length are also equal. (This fact can be rederived from the law of $\operatorname{sines}: a \int_{a} \frac{\sin \left(B_{1}\right)}{a}=\frac{\sin (\theta)}{a} \Rightarrow \sin B_{1}=\sin \theta \quad B_{1} B_{1}=\theta$) иесаик $0<8, \theta<90$

So we now have

We know the value of B_{1}, and we want to find B_{2}.

A flat line can be thought of as a 180° angle. So, since we have B_{2} / B_{1}, we must have $B_{1}+B_{2}=180$, therefore, $B_{2}=180-B_{1}$

- we find $C_{2}=180-A-B_{2}$
and $C_{2}=\frac{a \cdot \sin C_{2}}{\sin A}$ (law of ines)

Suppose we are given. $A=30^{\circ}, a=3, b=3 \sqrt{2}$

- To begin, we note $A<90^{\circ}$, and $a<b$.

- We see that $a_{1}=3 \sqrt{2} \sin (30)=\frac{3 \sqrt{2}}{2}=\frac{3}{\sqrt{2}}$. So, since $a=3>\frac{3}{\sqrt{2}}$, we have 2 solutions.

- Use law of sines to find $B_{1}=\sin ^{-1}\left(\frac{3 \sqrt{2}}{2 \cdot 3}\right)=\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)=45^{\circ}$

$$
\rightarrow c_{1}=180-30-45-105
$$

$$
\begin{aligned}
-\frac{c}{\sin c_{1}}=\frac{2}{\sin A}=\frac{3}{1 / 2}=6 \Rightarrow c_{1} & =6 \cdot \sin (105) \\
& =6 \cdot \sin \left(\frac{210}{2}\right)=6 \sqrt{\frac{1-\cos (210)}{2}}=6 \sqrt{\frac{1+\sqrt{3}}{2}}=6 \sqrt{\frac{2+\sqrt{3}}{4}}=3 \sqrt{2+\sqrt{3}} \ldots
\end{aligned}
$$

-We find $B_{2}=180-B_{1}=180-45=135$.

$$
\begin{aligned}
& \rightarrow C_{2}=180-A-B_{2}=180-30-135=15^{\circ} \\
& \rightarrow \frac{c_{2}}{\sin C_{2}}=\frac{2}{\sin A}-6 \rightarrow C_{2}=6 \sin (15)=6 \cdot \sin \left(\frac{30}{2}\right)=6 \sqrt{\frac{1-\cos (30)}{2}}=6 \sqrt{\frac{1-5 / 2}{2}}=6 \sqrt{\frac{2-\sqrt{3}}{4}}=3 \sqrt{2-\sqrt{3}}
\end{aligned}
$$

$\cdots+B_{2}=180-B_{1}=180-45=135$

