Polynomials
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, where $a_{i} \in \mathbb{R} ; a_{n} \neq 0$ is a polynomial of degree n, with leading coefficient a_{n} and y-intercept $(0, f(0))$
less formally: given a polynomial, its degree is the highest power of x that appears and its leading coefficient is the coefficient of the highest power of x.
examples. $\quad x^{5}+x^{3}-2 x+1$ has degree 5, and leading coefficient 1
$7 x^{2}-2 x^{4}-x^{3}$ has degree 4, and leading coefficient -2
$f(x)=A\left(x-c_{1}\right)^{m_{1}}\left(x-c_{2}\right)^{m_{2}} \cdots\left(x-c_{r}\right)^{m_{r}}$ is the factored form of a polynomial with degree $m_{1}+m_{2}+\ldots+m_{r}$ and reading coefficient A
The factored form allows us to find the zeros/x-intercepts of $f(x)$ and their multiplicities. Each C_{i} is a zero, with multiplicity m_{i}
examples. $-x(x-2)^{3}(x+7)^{2}$ is a polynomial of degree $1+3+2=\underline{6}$, with leading coefficient -1 .
the eros are: $x=0$, or $(0,0)$, with multiplicity 1
$x=2$, or $(2,0)$, with multiplicity 3
$x=-7$, or $(-1,0)$, with multiplicity 2
$9(x+3)(5 x-2)^{2}$ is a polynomial of degree $2+1=3$, with leading coefficient 9 .
when you haveaterm the zeros are: $x=-3$, or $(-3,0)$, with multiplicity 1
like this, set it equal
$x=\frac{2}{5}$, or $\left(\frac{2}{1}, 0\right)$, with multiplicity 2
to are and solve for x
$5 x-2=0 \Rightarrow x=\frac{2}{5}$
is the zero

What does degree, leading coefficient, zeros/multiplicities tull us about the graph of a polynomial?

1. End behavior: The ends of an even degree polynomial go in the same direction, if the leading coefficient is positive: As $x \rightarrow \infty, y \rightarrow \infty$ and as $x \rightarrow-\infty, y \rightarrow \infty$ U if the leading coefficient is negative: As $x \rightarrow \infty, y \rightarrow-\infty$ and as $x \rightarrow-\infty y \rightarrow-\infty \Omega$ - The ends of an odd degree polynomial go in opposite directions. if the leading coefficient is positive: As $x \rightarrow \infty, y \rightarrow \infty$ and as $x \rightarrow-\infty y \rightarrow-\infty$. if the leading coefficient is: As $x \rightarrow \infty, y \rightarrow-\infty$ and as $x \rightarrow-\infty y \rightarrow \infty$?
2. Behavior at x-intercepts: A zero with multiplicity 1 passes straight through the x-axis $\longleftarrow x$

A zero with even multiplicity bounces off of the x-axis $\stackrel{L}{\longleftrightarrow}$
A zero with odd multiplicity passes through the x-axis a flattens

The higher the multiplicity, the flatter the line
examples. graph $f(x)=-x^{3}-2 x^{2}+3 x$
First, we factor $f(x)$. We pull out the common term $(-x)$ to get $f(x)=-x\left(x^{2}+2 x-3\right)$
Then, since $(-2) \cdot(-1)=2$ and $(-1)+(-2)=-3$; we factor the quadratic, getting $f(x)=-x(x-2)(x-3)$.
We can now see that the zeros are at $(0,0),(2,0)$, and $(3,0)$; and each has multiplicity 1 Next, we note that f has degree 3 (odd) and leading coefficient -1, so the end behavior is $x \rightarrow \infty, y \rightarrow-\infty \quad \forall \quad x \rightarrow-\infty, y \rightarrow \infty$
To graph, we first plot the zeros
Then since as $x \rightarrow-\infty, y \rightarrow \infty$, we draw a lime going up and to the left starting at $(0,0)$ and since as $x \rightarrow \infty, y \rightarrow-\infty$, we draw a lime going down and to the right starting at $(3,0)$ Then since the multiplicity of each line is 1, at each zero we go straight through the x-axis. It's usually best to work left \rightarrow right

Write a possible function for the graph of the degree 5 polynomial.

First, we see that the zeros are at

$x=4$, with multiplicity 3 , giving us the term $(x-4)^{3}$
So we know $f(x)=A(x+2)^{2}(x-4)^{3}$.
We use the y-intercept to find the leading coefficient A.
The y-int. is $(0,2)$, so we know $f(0)=2$. From our formula, we know $f(0)=A(0+2)^{2}(0-4)^{3}$
So $f(0)=2=-256 \mathrm{~A}$; so $A=-\frac{1}{128}$
Therefore

$$
f(x)=-\frac{1}{128}(x+2)^{2}(x-4)^{3}
$$

$$
\begin{aligned}
& =A(2)^{2}(-4)^{3} \\
& =A(4)(-64) \\
& =-256 A
\end{aligned}
$$

Rational functions
if $p(x), q(x)$ are polynomials, $f(x)=\frac{p(x)}{q(x)}$ is a rational function.

- A hole / removable point ${ }^{1}$ is a zero of both $p(x)$ and $q(x)$, ie, a zero of both the numerator and denominator
- An x-intercept of $f(x)$ is a zero of $p(x)$ that is not a hole
- A vertical asymptote of $f(x)$ is a zero of $q(x)$ that is not a hole
examples. $f(x)=\frac{3(x-2)(x+1)(x+3)}{x(x+3)}$ has a hole at $x=-3$, x-intercepts $(2,0)$ and $(-1,0)$, and a vA. at $x=0$

$$
f(x)=\frac{-x^{2}+4}{(x+2)}=\frac{-(x+2)(x-2)}{(x+2)} \text { has a hole at } x=-2 \text {, an } x \text {-intercept }(2,0) \text {, and no V.A. }
$$

Horizontal Asymptotes:
Let n be the degree of $p(x)$ and let m be the degree of $q(x)$. Then there are 3 cases that $f(x)=\frac{p(x)}{q(x)}$ could fall into:

1. $m=n$: let a be the leading coefficient of $p(x)$ and let b be the leading coefficient of $q(x)$. Then $f(x)$ has a H.A. at $y=\frac{a}{b}$. (This is because the numerator and denominator grow at the same rate)
2. $m>n$: $f(x)$ has a H.A. at $y=0$. (This is because the denominator grows at a faster rate than the numerator)
3. $m<n$: $f(x)$ has no H.A. (This is because the numerator grows at a faster rate than the denominator.)

* when $n=m+1, f(x)$ has an oblique asymptote. We can find the equation for the 0 . A. through polynomial long division $g(x) \sqrt{p(x)}$
examples. $\frac{3 x^{2}+2 x-4}{x^{5}-3}$ has a $H . A$ at $y=0$
$\frac{x^{2}-9}{x^{2}+x+5} \quad$ has a H.A. at $y=1$
$\frac{x^{3}+2 x^{2}-1}{x^{2}-4}$ has no H.A., but does have an O. A., the line $x+2$.

$$
\begin{aligned}
& \begin{array}{l}
\frac{\sqrt{x+2 \mid} \rightarrow 0}{}+A \\
x^{2}-4 \sqrt{x^{3}+2 x^{2}-1} \\
\frac{-\left(x^{3}+0 x^{2}-4 x\right)}{2 x^{2}-4 x-1} \\
\frac{-\left(2 x^{2}-8\right)}{-4 x}-7
\end{array} \text { discard }
\end{aligned}
$$

Using x-intercepts, asymptotes, and test points, we can graph a rational function, or determine the formula of a rational function from a graph.
examples. graph $f(x)=\frac{x^{3}-5 x-6}{x^{3}-4 x}$
We first factor the numerator and denominator: $f(x)=\frac{(x+2)(x-3)(x+1)}{x(x+2)(x-2)}$
Holes: $(x+2)$ is a factor of both the numerator a denominator, so there is a hole at $x=-2$ x-ins: $(x-3),(x+1)^{\text {are }}$ factors of the numerator, but not the denom, so there are x-intercepts $(3,0),(-1,0)$ V.A.s: (x) and $(x-2)$ are factors of the denom but not the num, so there are V.A.s at $x=0$ and $x=2$. Since f is undefined for $x=0$ (V.A.) there is no y-intercept
Since the denominator has degree 3 , and the numerator has degree 3 , f has a HA. at $y=1$
We can now plot the asymptotes and the zeros. The x-intercepts tell us which section of the
 graph the line is in when $x<0$ and $x>0$ (in these areas, the line cannot cross the asymptotes. Horizontal asymptotes only effect ind behavior, so when $0<x<2$, it may cross the H.A However, the line may not cross the x axis, as there are no x-int between 0 and 2 . So a single test point will tell us what the line looks like. We check for $x=1$:
$f(1)=\frac{1^{3}-5(1)-6}{1^{3}-4(1)^{2}}=\frac{1-5-6}{1-4}=\frac{-10}{-3}=\frac{10}{3}>0$. So the graph stays above the x-axis between 0 and 2. Finally, we place the hole at $x=-2$
example. Write a possible formula for the graph of $f(x)$
Since there is a hole at $x=-2,(x+2)$ must be a factor of both the numerator and denominator.
Since there is an x-int at $x=1,(x-1)$ must be a factor of the numerator
Since there is a V.A. at $x=-1,(x+1)$ must be a foetor of the denominator
Since the H.A: is at $y=-1$, the leading coefficient must be -1
Therefore $f(x)=\frac{-(x+2)(x-1)}{(x+2)(x+1)}$
We can check that this formula agrees with the y-intercept: $f(0)=\frac{-(0+2)(0-1)}{(0+2)(0+1)}=\frac{-(-2)}{2}=\frac{2}{2}=1$

Domains
If f is a partial function on \mathbb{R} (egg.; a rational function or square root function) the domain of f is the set of all real numbers x for which $f(x)$ is defined.

If $f(x)=\frac{p(x)}{q(x)}$, ie., f is a rational function, then the domain of f is $\mathbb{R} \backslash\{x \in \mathbb{R} \mid q(x)=0\}=\{x \in \mathbb{R} \mid q(x) \neq 0\}$ in words: the domain of f is all real numbers except for the zeros of the denominator.

If $f(x)=\sqrt{g(x)}+$, ie., f is a square root function, then the domain of f is $\{x \in \mathbb{R} \mid g(x) \geq 0\}$, ie. all real numbers such that the inside of the
radical is non-negative examples. $\frac{3 x^{2}+2 x-2}{(x-1)(x+3)}$ has domain $\mathbb{R} \backslash\{1,-3\}=\{x \in \mathbb{R} \mid x \neq 1,-3\}=(-\infty,-3) \cup(-3,1) \cup(1, \infty)$
$\sqrt{2 x-1}+5$ has domain $\left\{x \in \mathbb{R} \left\lvert\, x \geq \frac{1}{2}\right.\right\}=\left[\frac{1}{2}, \infty\right)$, because $2 x-1 \geqslant 0 \Leftrightarrow x \geq \frac{1}{2}$

Compositions:
if f, g are partial functions on \mathbb{R}, the domain of $f \circ g$ is the domain of (the simplified form of) fog intersected with the domain of g.
examples. $\quad f(x)=\frac{1}{x}, g(x)=\frac{x}{x+2}$. dom $f=\mathbb{R} \backslash\{0\}$, dom $g=\mathbb{R} \backslash\{-2\}$

$$
\begin{aligned}
& f \circ g(x)=\frac{1}{\frac{x}{x+2}}=\frac{x+2}{x} \sim \text { dom } f \circ g=\frac{\mathbb{R} \mid\{0\}}{\frac{\operatorname{don}}{x+2}} \cap \mathbb{R} \backslash\{-2\}=\mathbb{R} \backslash\{0,-2\} \\
& r^{\text {dom } \frac{1}{12 x}} r^{\text {dom } f} \\
& \left.g \circ f(x)=\frac{\frac{1}{x}}{\frac{1}{x}+2}=\frac{1}{1+2 x} \simeq \operatorname{dom} g \circ f=\mathbb{R} \backslash-\frac{1}{2}\right\} \cap \mathbb{R} \backslash\{0\}=\mathbb{R} \backslash\left\{0,-\frac{1}{2}\right\} \\
& h(x)=x^{2}+3, k(x)=\sqrt{x-1} . \quad \operatorname{dom} h=\mathbb{R}, \operatorname{dom} k=\{x \in \mathbb{R} \mid x \geqslant 1\}=[1, \infty) \\
& h_{0 k}(x)=(\sqrt{x-1})^{2}+3=x-1+3=x+2 \text { ~ dom } h \circ k=\mathbb{R} \cap\{x \in \mathbb{R} \mid x \geq 1\}=\{x \in \mathbb{R} \mid x=1\}
\end{aligned}
$$

k oh $(x)=\sqrt{x^{2}+3-1}=\sqrt{x^{2}+2}$. note that $x^{2}+2 \geqslant 0 \Leftrightarrow x^{2} \geq-2$. since a square is always non-negative, this is true for all $x \in \mathbb{R}$

$$
\sim \text { dom kob }=\frac{\mathbb{R}}{\substack{c} \mathbb{R}=\mathbb{R}}
$$

Inverses
A function cor partial function) is invertible of and only if it is ingective/one-to-one
A function is infective if and only y every output corresponds to a unique input. We can think about this in two equivalent ways.
Formally: f is infective if and only $y \quad \forall a, b \in \operatorname{dom} f, f(a)=f(b) \stackrel{b^{\prime}}{\Rightarrow} a=b$
Graphically: we say that f is infective y and only if the graph of f passes the horizontal line test. f pass the horizontal line test when any possible horizontal line on the plane meets the graph of f in at most one spot
examples.

fails, so is not infective, so has no inverse.

The domain of f^{-1} is equal to the range of $f,\{y \in \mathbb{R} \mid \exists x \cdot f(x)=y\}$, ie., all the possible outputs of $f(x)$

To find f^{-1}, swap all instances of x with y and swap $f(x)$ with x, then solve for y.
example. $f(x)=\frac{1}{x+3} \leadsto x=\frac{1}{y+3} \leadsto y+3=\frac{1}{x} \leadsto y=\frac{1}{x}-3 \leadsto f^{-1}(x)=\frac{1}{x}-3$

$$
\text { The range of } f \text { is } \mathbb{R} \backslash<0\} \text { (} H, A \text { at } y=0 \text {, so dom } f^{-1}=\mathbb{R} \backslash(O)
$$

