Logarithms \& Exponentials
An exponential function is a function of the form $f(x)=c \cdot a^{k x+r}+k$ where $a_{1}, b, r, c, k \in \mathbb{R}$. we days have $a>0$.
The domain of an exponential function is all real numbers $(\mathbb{R}$, or $(-\infty, \infty))$. The range is split into two cases: if $c>0$, the range is $\{x \in \mathbb{R} \mid x>k\}$, or (k, ∞). if $c<0$, the range is $\{x \in \mathbb{R} \mid x<k\}$, or $(-\infty, k)$.
examples: $f(x)=3 e^{x / 4}+9 \leadsto$ Range $=(9, \infty)$
$g(x)=-5^{x+1} \leadsto$ Range $=(-\infty, 0) \quad *$ Note: The negative is no tetctal the exponent. We can write this Les ambiguously

$$
h(x)=100 \cdot 2^{10 x-3}-7 m \text { Range }=(-7, \infty)
$$ as $g(x)=-1 \cdot 5^{x+1}$

The most basic exponential functions are of the form a^{x}, where a is a positive real number.
Suppose $f(x)=a^{x}$. Then the inverse of $f(x)$ is called the $\operatorname{logarithm}$ of base a, and denoted $\log _{a}(x)$.
This fact, that a^{x} and $\log _{a}(x)$ are inverses, is the ky y to solving basically any problem from this section of the course.

Since a^{x} and $\log _{a}(x)$ are inverses, the following facts hold:

$$
\text { - } a^{\log _{a}(x)}=x
$$

- $\log _{a}\left(a^{x}\right)=x$
- The domain of $\log _{a}(x)$ is positive real numbers, ie $(0, \infty)$
- The range of $\log _{a}(x)$ is all real numbers, \mathbb{R}

Some other important properties of logarithms:

- $\log _{a}(x)+\log _{a}(y)=\log _{a}(x \cdot y)$
- $\log _{a}(x)-\log _{a}(y)=\log _{a}\left(\frac{x}{y}\right)$
- $\log _{a}(a)=1$ (this is just a special case of $\log _{a}\left(a^{2}\right)=x$)

Logarithms and exponential functions are used in many areas of math, science, engineering, etc. Some examples are given as word problems in this course
Sectors of Circles
A sector of a circle of radius r, with angle θ, can be drawn as below

The formulas for arc length (s) and area (A) are:
These can be derived from the circumference $(2 \pi r)$ and area $\left(\pi r^{2}\right)$ of the entire circle.
θ in Radians:
The whole circle is a "sector" with angle 2 r.
So $\frac{\theta}{2 \pi}=\frac{s}{2 \pi}$ and $\frac{\theta}{2 \pi}=\frac{A}{\pi r^{2}}$
ie the ratio $\theta: 2 \pi$ should be the same as the ratios $s: \frac{2 \pi r}{\text { circe. }}$ and $A \cdot \underset{\text { ara }}{\text { ri s }}$
θ in degrees:
same as \sim out 360° instead of 2π radians. So

$$
\frac{\theta}{360}=\frac{s}{2 \pi}=\frac{A}{\pi N^{2}}
$$

for the same reason'

Trigonometric Functions
The functions $\sin , \cos , \tan , \csc , \sec , \cot$ are the basic trigonometric functions. They are related with the following identities:

$$
\begin{aligned}
& \tan (x)=\frac{\sin (x)}{\cos (x)} \quad \sin ^{2}(x)+\cos ^{2}(x)=1 \\
& \sin (x)=\frac{1}{\csc (x)} \quad \cos (x)=\frac{1}{\sec (x)} \quad \tan (x)=\frac{1}{\cot (x)}
\end{aligned}
$$

We can visualise cos, sin, tan by using the unit circle: Given an angle θ, we use the corresponding sector of the unit circle, and consider the point of the circle given by the sector.

Then, $\cos (\theta)$ is the x-coordinate and $\sin (\theta)$ is the y-coordinate of that point.

It follows from this and $\tan \theta=\frac{\sin \theta}{\cos \theta}$ that $\tan (\theta)$ can be visualized as the slope of a line that goes through the point \& the origin.

From the unit circle visualization, we derive the following facts:

$$
\begin{aligned}
& \sin (-x)=-\sin (x) \\
& \cos (-x)=\cos (x) \\
& \tan (-x)=-\tan (x)
\end{aligned}
$$

and for any integer k (ie $k \in \mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$)

$$
\begin{aligned}
& \sin (x)=\sin (x+2 \pi k) \\
& \cos (x)=\cos (x+2 \pi k) \\
& \tan (x)=\tan (x+\pi k)
\end{aligned}
$$

Graphing Sinusoidal Functions
A sinusoidal function is of the form $A \sin (\omega(x-b))+m$
The amplitude is $|A|$
The frequency is ω (and $\omega=\frac{2 \pi}{p r i o \alpha}$)

- The period is $2 \pi / \omega$
- The phase shift is b
- The midline is m

We can see visually that $\cos (x)=\sin \left(x-\frac{\pi}{2}\right)$

